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Abstract. The successful and efficient approach at the basis of SOLVESAPHE (Munhoven, 2013), which determines the

carbonate system speciation by calculating pH from total alkalinity (AlkT) and dissolved inorganic carbon (CT), and which

converges from any physically sensible pair of such data, has been adapted and further developed for work with AlkT & CO2,

AlkT & HCO−3 and AlkT & CO2−
3 . The mathematical properties of the three modified alkalinity-pH equations are explored. It

is shown that the AlkT & CO2 and AlkT & HCO−3 problems have one and only one positive root for any physically sensible pair5

of data (i.e, such that, resp., [CO2]> 0 and [HCO−3 ]> 0). The space of AlkT & CO2−
3 pairs is partitioned into regions where

there is either no solution, one solution or where there are two. The numerical solution of the modified alkalinity-pH equations

is far more demanding than that for the original AlkT-CT pair as they exhibit strong gradients and are not always monotonous.

The two main algorithms used from SOLVESAPHE v. 1 had to be revised in depth to reliably process the three additional data

input pairs. The AlkT & CO2 pair is numerically the most challenging. With the Newton-Raphson based solver, it takes about10

five times as long to solve as the companion AlkT & CT pair, while AlkT & CO2 requires about four times as much time. All in

all, it is nevertheless the secant based solver that offers the best performances. It outperforms the Newton-Raphson based one

by up to a factor of four, to reach equation residuals that are up to seven orders of magnitude lower. Just like the pH solvers

from routines from the v. 1 series, SOLVESAPHE v. 2 includes automatic root bracketing and efficient initialisation schemes

for the iterative solvers. For AlkT & CO2−
3 pairs of data, it also determines the number of roots and calculates non-overlapping15

bracketing intervals. An open source reference implementation in Fortran 90 of the new algorithms is made publicly available

for usage under the GNU Lesser General Public Licence v. 3 or later.

1 Introduction

Among all the aspects of the ongoing global environmental changes (climate change, ocean acidification, . . . ), the solution

chemistry of carbon dioxide (CO2) is one of the best known. The related chemistry of the carbonate system in the oceans and20

other aqueous environments is well understood and routinely monitored and modelled. The equilibrium between the carbonate

system species involves four variables: [CO2] (or equivalently the partial pressure of CO2, pCO2, or its fugacity, fCO2),

[HCO−3 ], [CO2−
3 ] and [H+] (or equivalently pH). The speciation, i.e., the determination of the concentrations of the individual
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species, therefore also requires four constraints. Two constraints are given by the equilibrium constants that characterize the

equilibria between dissolved CO2 and HCO−3 on one hand, and between HCO−3 and CO2−
3 on the other hand, assuming25

that these are known or can be calculated. Two more independent constraints are thus required to completely characterize the

system. Depending on the applications, different types of information are used: modellers will call upon the total concentration

of Dissolved Inorganic Carbon, CT = [CO2] + [HCO−3 ] + [CO2−
3 ] and total alkalinity, AlkT, which are both measurable, but

most important, conservative and thus appropriate suitable for a budgeting approach; experimentalists use the pair that best

suits their analytical equipment and expertise. With these additional constraints, the concentrations of the individual species30

can then be calculated. Such calculations are performed to an advanced level of detail with dedicated and highly specialised

packages. The review of Orr et al. (2015) offers a systematic analysis of subsisting uncertainties and inconsistencies between

ten such packages, focusing on the equilibrium constants adopted, pressure corrections applied, etc. Here, we do not focus

on the best set of equilibrium constants to use, nor on details related to temperature or salinity scales, or parametrisations

of the water density. Please refer to the comprehensive review of Orr et al. (2015) (and also Orr and Epitalon (2015)) and35

references therein for these and related aspects. Here, we focus on the design of algorithms that can solve the underlying

mathematical problem with as little user input as possible – if possible such inputs should reduce to the bare essentials: besides

the fundamental information about temperature, salinity, pressure and the thermodynamic data, this best had to be one pair of

input data only.

In the companion paper (Munhoven, 2013), such autonomous algorithms with robust convergence properties for a wide range40

of environmental conditions had been developed for usage with the AlkT & CT pair. For the present study, we are revisiting

that approach, extending and adapting it so that the AlkT & CO2, AlkT & HCO−3 and AlkT & CO2−
3 can be processed with

the same reliability.

Cornerstone to the speciation calculation is the resolution of the following equation, that derives from the definition of Total

Alkalinity45

RT([H+])≡ AlknW([H+]) +
KW

[H+]
− [H+]

s
−AlkT = 0, (1)

i. e., eq. (21) from Munhoven (2013), where

AlknW([H+]) =
∑

i

AlkA[i]([H
+])

is that part of the total alkalinity not related to the water self-ionization, with i denumbering the acid systems resulting from

the dissolution of acids A[i] whoe dissolution products contribute to total alkalinity. [H+] is the proton concentration expressed50

on one of the commonly used pH scales (total, seawater) and s is a factor to convert from that scale to the free scale. s depends

on temperature, pressure and salinity of the sample. For the purpose of this study, AlknW([H+]) is partitioned into carbonate

alkalinity, AlkC([H+]), and non-carbonate alkalinity, AlknWC([H+]),

AlknW([H+]) = AlkC([H+]) + AlknWC([H+])

since the relevant carbonate system parameters (the concentrations of CO2, HCO−3 and CO2−
3 and their sum, CT) are all55

directly related to AlkC. Similarly to AlknW, AlknWC admits an infimum and a supremum which can both be derived from the
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total concentrations of all the acid-base systems considered. We denote these two by AlknWCinf and AlknWCsup, respectively.

Eq. (1) is thus formally rewritten as

RT([H+])≡ AlkC([H+]) + AlknWC([H+]) +
KW

[H+]
− [H+]

s
−AlkT = 0, (2)

The carbonate alkalinity term writes, as a function of CT60

AlkC([H+]) =
K1[H+] + 2K1K2

[H+]2 +K1[H+] +K1K2
CT (3)

where K1 and K2 are the first and second stoichiometric dissociation constants of carbonic acid. The individual carbonate

species fractions of CT can be expressed as a function of [H+]:

[CO2] =
[H+]2

[H+]2 +K1[H+] +K1K2
CT (4)

[HCO−3 ] =
K1[H+]

[H+]2 +K1[H+] +K1K2
CT (5)65

[CO2−
3 ] =

K1K2

[H+]2 +K1[H+] +K1K2
CT. (6)

Accordingly, AlkC([H+]) may be rewritten in one of the following forms

AlkC([H+]) =
K1[H+] + 2K1K2

[H+]2
[CO2] (7)

AlkC([H+]) =
K1[H+] + 2K1K2

K1[H+]
[HCO−3 ] (8)

AlkC([H+]) =
K1[H+] + 2K1K2

K1K2
[CO2−

3 ] (9)70

which will be used hereafter.

2 Theoretical Considerations

In the following, it is assumed that the temperature T , salinity S and applied pressure P are given and that adequate values

for all the required stoichiometric equilibrium constants are available. It is furthermore assumed that the total concentrations

of all the other relevant acid systems (borate, hydrogen sulphate, phosphate, silicate, etc.) are known or can be derived from75

adequate parametric relationships.

Eleven out of the fifteen different possible pairs of independent parameters of the carbonate system do not require any

complex iterative schemes, but can be directly solved or require at most the resolution of a quadratic equation. For the sake of

completeness – and with minimal details only – “recipes” for solving these straightforward cases are provided in the appendix.

Alternative approaches can be found in the literature, such as in the Guide to Best Practices for Ocean CO2 Measurements80

(Dickson et al., 2007). Dickson et al. (2007) also provide pathways for usage with triplets or quartets of input data. These only

require the knowledge of one of the two dissociation constants or of their ratio, or none of them. That kind of approach is,

however, not considered in this study.
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The remaining four pairs require iterative procedures. Besides the AT & CT pair which was addressed in full detail by

Munhoven (2013) these are (1) AT & CO2, (2) AT & HCO−3 and (3) AT & CO2−
3 . As will be shown below, the SOLVESAPHE85

approach of Munhoven (2013), which is based upon the use of a hybrid iterative solver safeguarded by intrinsic brackets that

can be calculated a priori, can be easily adapted for the AT & CO2 and AT & HCO−3 pairs. The AT & CO2−
3 pair, for which

there are ranges of combinations that do not allow any compatible pH value, and other ranges where there are two of them,

requires additional analysis. We show below that it is nevertheless possible to diagnose these different situations and, in case

there are two solutions, to derive bracketing intervals for each of the two and to isolate them efficiently. For each pair, we90

(1) establish the analytical properties of the modified pH-alkalinity equation; (2) derive brackets for the root(s); (3) develop a

reliable and safe algorithm to solve the problem; (4) design an efficient initialisation scheme. We will now in turn analyse the

mathematical properties of the alkalinity-pH equation that results from the substitution of CT by the concentration of one of its

individual species.

2.1 AlkT & CO295

The AlkT & CO2 pair can be dealt with in a similar way to the AlkT & CT pair in the original SOLVESAPHE. The AlkC([H+])

term in eq. (2) is written as in eq. (7) and eq. (2) becomes
(
K1

[H+]
+

2K1K2

[H+]2

)
[CO2] + AlknWC([H+]) +

KW

[H+]
− [H+]

s
−AlkT = 0. (10)

Just like the AlkC([H+]) expression from eq. (3) is monotonously decreasing with [H+] for CT fixed, that from eq. (7) is

monotonously decreasing with [H+] for [CO2] fixed. The expression at the left-hand side of eq. (10) decreases from +∞ to100

−∞ for [CO2]> 0 as [H+] varies from 0+ to +∞. Eq. (10) thus always has exactly one positive solution.

2.1.1 Root bracketing

Intrinsic brackets for the solution of eq. (10) can be derived similarly to what is done in section 5.1 in Munhoven (2013). The

lower bound Hinf can be chosen such that
(
K1

Hinf
+

2K1K2

H2
inf

)
[CO2] +

KW

Hinf
− Hinf

s
= AlkT−AlknWCinf105

i.e., as the positive root of the cubic equation

H3

s
+ (AlkT−AlknWCinf)H2− (K1[CO2] +KW)H − 2K1K2[CO2] = 0

Let us denote this cubic by P (H). It is important to notice that P (0) =−2K1K2[CO2]< 0 and P ′(0) =−(K1[CO2]+KW)<

0. The equation P (H) = 0 has therefore one and only one positive root.

Similarly, the upper bound Hsup can be chosen such that110

(
K1

Hsup
+

2K1K2

H2
sup

)
[CO2] +

KW

Hsup
− Hsup

s
= AlkT−AlknWCsup
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i.e., as the positive root of the cubic equation

H3

s
+ (AlkT−AlknWCsup)H2− (K1[CO2] +KW)H − 2K1K2[CO2] = 0

which has also one and only one positive root, for the same reasons as above.

The positive roots of these cubic equations can be found by adopting a strategy similar to that used for the cubic initialisation115

of the iterative solution in SOLVESAPHE (Munhoven, 2013, sec. 3.2.2):

1. Locate the local minimum of the cubic, in Hmin > 0;

2. Develop the cubic as a quadratic Taylor expansion, Q(H), around that minimum;

3. Solve Q(H) = 0 which has two roots and chose the one that is greater than Hmin.

In this particular case, it is, however, not necessary to solve these equations exactly as we only need approximate bounds of120

the root for safeguarding the iterations while solving eq. (2). For Hinf we may actually chose the Hmin of the first cubic which

is lower than the positive root and thus sufficient. Regarding Hsup, it should be noticed that P (H) =Q(H) + (H −Hmin)3/s.

Accordingly, P (H)>Q(H) for H >Hmin and therefore the greater root of Q(H) for the second cubic is greater than the

positive root of that cubic. The greater of the two roots of Q(H) is therefore a sufficient upper bracket and may be used instead

of the exact Hsup.125

Any bracketing root-finding algorithm can then be used to solve the modified pH-alkalinity equation (10).

2.2 AlkT & HCO−
3

For the AlkT & HCO−3 pair, the AlkC([H+]) term in eq. (2) is written as in eq. (8):
(

1 +
2K2

[H+]

)
[HCO−3 ] + AlknWC([H+]) +

KW

[H+]
− [H+]

s
−AlkT = 0. (11)

The AlkC([H+]) expression used in eq. (8) is again monotonously decreasing with [H+] for [HCO−3 ] fixed. The expression at130

the left-hand side of eq. (11) decreases from +∞ to−∞ for [HCO−3 ]≥ 0 as [H+] varies from 0+ to +∞. Eq. (11) thus always

has exactly one positive solution.

2.2.1 Root bracketing

The lower bound Hinf can be chosen such that
(

1 +
2K2

Hinf

)
[HCO−3 ] +

KW

Hinf
− Hinf

s
= AlkT−AlknWCinf135

i. e., as the positive root of the quadratic equation

H2

s
+ (AlkT−AlknWCinf− [HCO−3 ])H − (2K2[HCO−3 ] +KW) = 0.
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Similarly, the upper bound Hsup can be chosen such that
(

1 +
2K2

Hsup

)
[HCO+

3 ] +
KW

Hsup
− Hsup

s
= AlkT−AlknWCsup

i. e., as the positive root of the quadratic equation140

H2

s
+ (AlkT−AlknWCsup− [HCO−3 ])H − (2K2[HCO−3 ] +KW) = 0.

Both equations always have two roots, one positive and one negative — their product is negative as indicated by the constant

term. With the respective positive roots, we have again bounds for the solution of the modified pH-alkalinity equation and any

bracketing root-finding algorithm can be used to solve it.

2.3 AlkT & CO2−
3145

Whereas any physically meaningful AlkT & [CO2] or AlkT & [HCO−3 ] concentration pairs will always provide one and only

one [H+] (or equivalently pH) value as demonstrated above, this cannot be the case for AlkT-[CO−3 ] pairs, as can be deduced

from Fig. 1b and 1c. On one hand, there are two compatible CT, and equivalently two pH values for most AlkT-[CO−3 ] pairs.

This little-known fact was already documented in the 1960s (see, e. g., Deffeyes (1965)). On the other hand, there are also

AlkT-[CO−3 ] pairs that do not allow for any solution, as they lead to negative carbonate alkalinity. To our best knowledge, none150

of the currently used carbonate system speciation programs takes this possibility into account.

The solution of the AlkT-[CO−3 ] problem thus requires a more in-depth preliminary mathematical analysis. To start, we write

out eq. (2) with the AlkC expression for [CO−3 ] (eq. (9)):

K1[H+] + 2K1K2

K1K2
[CO2−

3 ] + AlknWC([H+]) +
KW

[H+]
− [H+]

s
−AlkT = 0.

Let us collect all the terms that are related to carbonate or water self-ionization alkalinity at the left-hand side, introduce the155

shorthand

γ =
[CO2−

3 ]
K2

− 1
s
.

and rewrite the equation as

γ[H+] +
KW

[H+]
+ 2[CO2−

3 ] = AlkT−AlknWC([H+]). (12)

The value of γ is one of the main controls on the number of roots that this equation has.160

1. If γ < 0, the equation has similar mathematical characteristics as the usual pH-alkalinity equation (eq. (1). It has exactly

one root which can be calculated using similar procedures as in the original SOLVESAPHE. Please notice though that

this means that [CO2−
3 ]< K2

s . Since K2 is of the order of 10−9 mol/kg-SW and s is of the order of 1, this case is only

relevant for CO2−
3 concentrations of the order of 1 nmol/kg-SW and less.

2. If γ = 0 (i. e., if [CO2−
3 ] = K2

s ), the equation has exactly one root if AlkT−2[CO2−
3 ]−AlknWCinf > 0, no root otherwise.165
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Figure 1. (a) pH isolines; (b) CO2−
3 concentration isolines in CT-AlkT space; (c) CO2−

3 , (d) CO2 and (e) HCO−3 concentration isolines in

pH-AlkT space. These distributions were calculated with SOLVESAPHE version 1.0.3. For (c), (d) and (e), carbonate alkalinity, AlkC, was

derived by using eq. (2), combined with with eqs. (9), (7) and (8) to derive [CO−2
3 ], [CO2] and [HCO−3 ], resp. Blank areas represent the

pH-AlkT combinations that lead to negative AlkC. Fig. 3 in Deffeyes (1965) is similar to (b).

3. If γ > 0, the left-hand side is not monotonous: it decreases from +∞ in [H+] = 0+ to a minimum (see below) and then

increases back to +∞ as [H+]→+∞. The right-hand side is bounded and strictly increasing over the same interval

(Munhoven, 2013). As a result, the equation has no root if the right-hand side is too low, exactly one if the two curves

become tangent and two roots if the right-hand side is great enough.

2.3.1 Mathematical analysis and root bracketing170

To alleviate notation let us define the two parametric functions

L([H+];γ) = γ[H+] +
KW

[H+]
+ 2[CO2−

3 ] (13)

R([H+];A) =A−AlknWC([H+]), (14)

where [H+] is the independent variable and γ andA (alkalinity) are parameters. With these two function definitions, eq. (12then

rewrites L([H+];γ) =R([H+];AlkT). Schematic representations of the three γ cases and of the L and R functions are shown175

on Fig. 2.
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Figure 2. Schematic representation of the general characteristics of the L([H+];γ) andR([H+;A) components of the pH-alkalinity equation

for the AlkT−CO2−
3 pair. The grey band delimits the (monotonous) variations of R([H+];A), for a given alkalinity A. The band moves up

and down without being distorted as A is increased, resp., decreased. For a given pair of AlkT and CO2−
3 concentrations, the actual equation

to solve is L([H+];γ) =R([H+];AlkT), where γ =
[CO2−

3 ]

K2
− 1

s
. γ = 0 thus corresponds to [CO2−

3 ] = K2
s

.
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Case γ < 0

The first case can be handled similarly to the AlkT & CO2 and AlkT & HCO−3 pairs. Eq. (12) always has exactly one root with

γ < 0 as the equation function is monotonous and strictly decreasing with [H+]. Upper and lower bounds for that root can be

derived by solving the (quadratic) equations180

γHinf +
KW

Hinf
+ 2[CO2−

3 ] = AlkT−AlknWCinf (15)

for Hinf and

γHsup +
KW

Hsup
+ 2[CO2−

3 ] = AlkT−AlknWCsup (16)

for Hsup, and retaining the respective positive roots of each.

Case γ = 0185

The second case might be considered to be only mathematically of importance as it only applies for one exact (and thus

improbable) CO2−
3 concentration value. For the sake of completeness, we nevertheless solve it.

As mentioned above, if γ = 0, eq. (12) has one solution if and only if AlkT−AlknWCinf > 2[CO2−
3 ], and no solution else.

The root can be easily bracketed from below. It is sufficient to chose Hinf such that

KW

Hinf
= AlkT− 2[CO2−

3 ]−AlknWCinf190

leading to L(Hinf;γ)−R(Hinf;AlkT)> 0. The analogue equation for Hsup, with AlknWCinf replaced by AlknWCsup (cf. eqs. (15)

and (16)) does not work if AlkT−AlknWCsup ≤ 2[CO2−
3 ]. The newly derived asymptotic approximation for AlknWC([H+]) for

[H+]� (see the Mathematical and Technical Details report in the Supplement) nevertheless provides a means to derive an

upper bound. It is sufficient to chose Hsup such that

KW

Hsup
= AlkT− 2[CO2−

3 ]−AlknWCinf−
∑

i[ΣA[i]]K1,[i]

Hsup
195

where i denumbers the acid systems considered, except for the carbonate system, [ΣA[i]] is the total amount of the acid i

dissolved and K1,[i] is the first dissociation constant of the acid system i. This equation always has a solution and, taking into

account that

AlknWC([H+])<AlknWCinf +
∑

i[ΣA[i]]K1,[i]

[H+]
,

which is valid for [H+]> 0, it is straightforward to show that L(Hsup;γ)−R(Hsup;AlkT)< 0 with this choice. Eq. (12), which200

is equivalent to L(H;γ)−R(H;AlkT) = 0 thus has one single root between Hinf and Hsup.

Case γ > 0

The third case is the most commonly encountered, and the most challenging. With γ > 0, L([H+];γ) has a minimum and the

location of that minimum is a critical parameter in the analysis of this case. Let us denote the location of that minimum by
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Hmin and the value that L takes there by Lmin:205

Hmin =

√
KW

γ
and Lmin = 2

√
γKW + 2[CO2−

3 ].

There are two ranges of AlkT values where firm conclusions can be drawn right away.

1. If R(Hmin;AlkT)> Lmin, i. e., if AlkT > Lmin + AlknWC(Hmin), eq. (12) has two distinct roots, since R(H;AlkT) is

bounded. Furthermore, the roots — let us provisionally denote the lower one H1 and the greater one H2 — are such that

H1 <Hmin and H2 >Hmin. Hmin can thus be used as an upper bracket for H1 and as a lower bracket for H2. However,210

if AlkT−AlknWCsup > Lmin, the abscissae of the intersection points PLL and PLR (see Fig. 2), which are solutions of

γH +
KW

H
= AlkT− 2[CO2−

3 ]−AlknWCsup

provide tighter brackets than Hmin.

2. If AlkT−AlknWCinf ≤ Lmin, i. e., if AlkT ≤ Lmin + AlknWCinf, eq. (12) does not have any roots.

For intermediate values of AlkT, no firm quantitative statement regarding the root(s) of eq. (12) can be made a priori. As AlkT215

decreases from Lmin + AlknWC(Hmin) to Lmin + AlknWCinf, eq. (12) will at first still have two roots, but both are greater than

or equal to Hmin. At some intermediate value, L([H+];γ) and R([H+];AlkT) become tangent. At this point, eq. (12) has one

double root, which is the abscissa of that tangent point, Htan. Htan is actually a universally valid separation limit between two

roots, if there are any. For lower values of AlkT, the problem does not have any solutions.

The limiting AlkT value for which the two curves are tangent and the corresponding Htan value can be calculated with a220

common algorithm to characterize a bracketed local minimum, such as Brent’s algorithm (Brent, 1973). To start, we reconsider

L([H+];γ)−R([H+];A) = 0 not as an equation in [H+] for given parameter value γ (or, equivalently, [CO2−
3 ]) and A, but

rather as an implicit definition for A as a function of [H+], for a given γ (here γ > 0). This implicit function definition can

actually be solved explicitly here:

A([H+]) = L([H+];γ) + AlkncW([H+]).225

Figure 3 shows how the two problems are related and which information can be derived from the analysis of L([H+];γ)

and R([H+];A) to contribute to the solution of the minimization of A([H+]). The determination of Htan is costly, generally

more costly even than the subsequent resolution of the pH equation itself. As mentioned right at the beginning of this section,

there are extended ranges of AlkT values for which the exact knowledge determination of Htan is not indispensable. In these

situationsHmin may be a sub-optimal but nevertheless sufficient separation limit for the roots (or equal to the double root itself),230

and cheap to calculate. If available, Htan can be used as an upper bound for the lower and as a lower bound for the greater of

the two roots. To start the minimization algorithm to derive Htan, we can use the three characteristic [H+] values from Fig. 3

as initial conditions. These are Hmin together with the abscissae HL and HR of the intersection points between L([H+];γ) and

the horizontal line at Alkmin−AlknWCinf, which are the roots of

γH2− (Alkmin− 2[CO2−
3 ]−AlknWCinf)H +KW = 0.235
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L([H+];γ)

Amin−AlknWCsup

Amin−AlknWCinf

R([H+];Amin)

PUR

HR

PUL

Hmin

0

Alk

[H+]

Amin

0
[H+]

Alk

HL

Lmin

Figure 3. Determination of the A value for which the L([H+];γ) and R([H+];A) curves become tangent, or, equivalently, the lowest AlkT

value for which the equation L([H+];γ)−R([H+];AlkT) = 0 has a solution. The top panel shows how relevant characteristic points can be

derived by considering the particular R([H+];A) curve that intersects L([H+];γ) at its minimum. The bottom panel shows the locus of the

solutions of L([H+];γ)−R([H+];AlkT) = 0 in an [H+]−AlkT) graph, i.e., the curve AlkT) = L([H+];γ)+ AlkncW([H+]). Please notice

that Amin = Lmin + AlkncW(Hmin) denotes the alkalinity value obtained for [H+] =Hmin, and not the minimum value of the curve shown on

the bottom panel. See text for details.
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By construction, Alkmin−AlknWCinf > Lmin = 2
√
γKW + 2[CO2−

3 ]. The discriminant of this quadratic equation is therefore

strictly positive and the equation has two positive roots (their sum and their product are positive) as required. It is possible

to show that the second derivative of R([H+];A) with respect to [H+] is positive provided that the successive dissociation

constants Kj,[i] of the different acid systems (denumbered by i) resulting from the dissociation of an acid Hn[i]A[i] are such

that Kj,[i] <
1
2Kj−1,[i], j = 2, . . . ,n[i] — a very weak constraint as these constants generally generally differ by a few orders240

of magnitude. This has been verified to be the case for acid systems with n[i] = 1, . . . ,12 The underlying technical develop-

ments can be found in the Mathematical and Technical Details report in the Supplement. R([H+];A) is thus concave, while

L([H+];γ) is convex for γ > 0. A([H+]) thus has only one single local minimum comprised between HL and HR.

Once Htan is known, the root brackets can be completed by the intersection points between L([H+];γ) and the horizontal

line at AlkT−AlknWCinf – corresponding to the PUL and PUR points on Fig. 2 with the grey band shifted down to include the245

minimum – i. e., by solving the same quadratic equation than for HL and HR, with Alkmin replaced by AlkT. We have again

AlkT−AlknWCinf > Lmin and the equation has two positive roots. With these brackets on the two roots, any safeguarded iterative

procedure, such as those implemented in SOLVESAPHE can be used to find the two roots in a controlled way.

2.4 Initialisation: rationale

Since we have bracketing intervals for each of the root(s), we may always use the fall-back initial value H0 =
√
HinfHsup.250

This value is, however, often far from optimal. The efficient initialisation strategy of Munhoven (2013) can be generalized and

adapted to each of the three pairs. For each case, we chose the most complex AlkT approximation that leads to a cubic equation.

If the cubic polynomial behind that equation does not have a local minimum and a local maximum, we use the fall-back value.

If such a local minimum and maximum exist, we use the quadratic Taylor expansion around the relevant extremum — this will

normally be the maximum if the coefficient of the cubic term is negative, and the minimum if that coefficient is positive. If that255

quadratic does not have any positive roots, the fall-back initial value is used. The roots for that quadratic are then determined.

For problems that have only one positive [H+] solution (AlkT & CO2, AlkT & HCO−3 and the AlkT & CO2−
3 with γ < 0), we

consider that root of the quadratic expansion that is greater than the greatest location of the two extrema: if that root is lower

than Hinf, we use H0 =Hinf; if it is greater than Hsup, we set H0 =Hinf. For problems that have two positive [H+] solutions

(AlkT & CO2−
3 with γ > 0 and sufficiently great AlkT), the initial value for determining the greater of the two [H+] solutions260

can be chosen exactly the same way; the initial value required to calculate the lower of the two [H+] solutions may be more

tricky. If the location of the right-hand side extremum is too close to 0, the estimated root of the cubic may be negative. In this

case, the quadratic fitted to left-hand extremum should be considered as well and the greater of its roots tested. Because of the

symmetries of a cubic, that root can be calculated with a few extra additions only.

The developments for each of the three input pairs are presented in full detail in the Mathematical and Technical Details265

report in the Supplement.
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3 Numerical Experiments

3.1 Reference Fortran 90 implementation

The SOLVESAPHE Fortran 90 library from Munhoven (2013) – hereafter SOLVESAPHE v. 1 – has been revised, cleaned up

and upgraded to allow the processing of the additional three pairs. For the purpose of this paper, only the two main solvers270

have been kept. solve_at_general and solve_at_general_sec are still available with the same API as in v. 1.

The instances in the new v. 2 are nevertheless only wrappers to solve_at_general2 and solve_at_general2_sec

which are able to process problems that have two roots. They return the number of roots of the problem, as well as the actual

roots.

In the course of the development s related to the AlkT & CO2 pair the Newton-Raphson based algorithm showed a few275

weaknesses. With the AlkT & CT pair that SOLVESAPHE v. 1 had been designed for, each non-water alkalinity term was

bounded, just like its derivative. Once CO2 takes the role of CT these favourable properties are lost: with [CO2] fixed, the

carbonate alkalinity term and its derivative with respect to [H+] become unbounded. Newton iterates can then change by large

amounts and floating point over- and underflow errors on the exponential correction became common. The rate of change

for Newton-Raphson iterates during each step was therefore limited to a factor of 100. With high CO2 concentration values280

prescribed, there was another loss of control on the iteration sequence that had not been encountered before. At some iterations,

most often at the first one, it happened that one of the two root brackets, say the upper one, was reduced to the iteration value.

In the next iteration, that same bound was exceeded by the trial Newton-Raphson iterate, which was then rejected and replaced

by a bisection iterate on the interval delimited by the previous iterate and the upper bracket. Since both were identical, the

bisection actually produced no variation and falsely led to convergence diagnosis. This has been fixed by changing the interval285

whereon the bisection step is performed to that delimited by the lower and the upper brackets of the root, which are always

different.1 The unbounded variations of the carbonate alkalinity term when one of the individual species was used instead ofCT

furthermore required to modify the stopping criterion for the iterations: in SOLVESAPHE v. 1 iterations are stopped as soon

as the relative difference between successive iterates falls below a set tolerance ε (ε= 10−8 by default). However, iterations for

AlkT & CO2 and for the greater root of AlkT & CO−2
3 were prone to early termination with that stopping criterion, as iterates290

only slowly changed due to the extreme gradients in the AlkC term of the equation function. The stopping criterion is therefore

now based upon the width of the bracketing interval and iterations are stopped as soon as (Hmax−Hmin)< ε 1
2 (Hmax +Hmin),

where Hmax and Hmin are resp. the upper and lower brackets of the root, which are continuously updated as iterations progress.

As a consequence of this change, the number of bisection steps considerably increased. In order to speed up convergence, most

bisection steps were replaced by regula falsi steps on [Hmin,Hmax]. Bisection steps are only used occasionally when either the295

minimum or maximum root bracket gets updated too often in a row (three times by default) which indicates that the equation

values at Hmax and Hmin have strongly different magnitudes. Unfortunately, the number of iterations required for the original

SOLVESAPHE pair AlkT & CT increase with this stopping criterion, without any appreciable gain in precision (compare,

1Both corrections have been backported to the v. 1 branch of SOLVESAPHE and are included in v. 1.1 in the SOLVESAPHE archive on Zenodo

(DOI:10.5281/zenodo.3752250).
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SW1 SW2 SW3 SW4

scale min max min max min max min max

AlkT/[meq/kg] linear 2.20 2.50 2.20 3.50 −1 5 0 1.5

CT/[mmol/kg] linear 1.85 2.45 1.85 3.35 0 6 0 1.2

[CO2]/[mol/kg] log. 10−6 10−3 10−7 10−3 10−14 10−2 10−12 10−3

[HCO−3 ]/[mmol/kg] linear 1.20 2.40 0.60 3.20 0 5 0 1

[CO2−
3 ]/[mol/kg] log. 10−5 10−3 10−6 10−3 10−14 10−2 10−9 10−3

Table 1. Ranges of variation for the input variables for the SW1, SW2 and SW3 test cases. Experiments always considered AlkT and either

one of CT, [CO2], [HCO−3 ] or [CO2−
3 ].

e. g., the number of iterations from Fig. 3b and the residuals from Fig. 1d in Munhoven (2013), with the number of iterations

required here as reported on Fig. 5 for SW3 and the synthetic overview of the equation residuals reported in Tables S2 and300

S3 in the Additional Results in the Supplement). For modelling purposes, where AlkT & CT is generally the relevant pair

of data, SOLVESAPHE v. 1 remains the most efficient choice. Tests have shown that the two safe-guarded algorithms from

SOLVESAPHE v. 1 typically require 40–45% less computing time than their new v. 2 counterparts.

Finally, as explained above, some AlkT & CO2−
3 combinations require the solution of an auxiliary minimisation problem.

For this purpose, Brent’s algorithm was implemented into SOLVESAPHE (translated to Fortran 90 from the Algol 60 version in305

Brent (1973, sect. 5.8), taking into account the author’s errata reported on https://maths-people.anu.edu.au/~brent/pub/pub011.

html and his modifications to the original algorithm as implemented in https://www.netlib.org/go/fmin.f).

3.2 Results and discussion

3.2.1 Test cases

Results from the three test cases SW1, SW2 and SW3 from Munhoven (2013) were used to define ranges of CO2, HCO−3 and310

CO2−
3 concentrations to drive the test case experiments (see Figs. S1–S4 in the Additional Results in the Supplement). For

the sake of simplicity, we keep the corresponding denominations here. A supplementary ‘SW4’ was added for brackish water

(with S = 3.5). For CO2 and CO2−
3 , which are most conveniently handled on a logarithmic scale, the representative ranges

were adapted so that the range endpoints are integer powers of ten. The adopted ranges and scales are reported in Tab. 1. Each

of the tests cases is complemented with temperature, salinity and pressure conditions for four typical environments (surface315

cold, surface warm and deep cold seawater, as well as surface brackish water.
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Figure 4. pH distributions for the SW2 test case under cold surface conditions (T = 273.15K, S = 35 and P = 0bar), obtained with

solve_at_general2_sec: (a) AlkT & CO2; (b) AlkT & HCO−3 ; (c) the lower [H+] root (higher pH root) of AlkT & CO2−
3 ; (d) the

greater [H+] root (lower pH root) of AlkT & CO2−
3 . The thick grey dashed line in (c) and (d) shows the critical limit above which the AlkT &

CO2−
3 always has two roots. Below this limit further calculations are required to determine the number of solutions. More details are given

in the text and in the Supplement. Please notice the different scales on the horizontal axes and for the pH colour coding in the four panels.

3.2.2 Results

While all the test cases have their specific relevance, we are going to focus on SW2 for most of our discussion here. SW2

covers currently observed sea-water samples, thus encompassing SW1, and conditions expected to occur over the next 50,000

years as derived from simulation experiments carried out with MBM-MEDUSA (Munhoven, 2009). A wider selection of results320

also for the other cases presented in the Additional Results in the Supplement. pH distributions for the SW2 test case are shown

on Fig. 4.

The difficulties posed by AlkT & CO2 that were at the origin of most of the amendments to the solver algorithms show up in

the histograms for the number of iterations required to reach convergence shown on Fig. 5 for solve_at_general which
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Figure 5. Number of iterations to convergence required by the various data pairs (separately for the lower and the greater [H+] roots of

the AlkT & CO2−
3 ), for each of the four test cases, carried out with solve_at_general (using a hybrid Newton-Raphson–regula falsi–

bisection method). The absolute maximum numbers of iterations were 58, 58, 68 and 66, for SW1 to SW4, resp.

uses the hybrid Newton-Raphson–regula falsi–bisection scheme and on Fig. 6 for solve_at_general_secwhich uses the325

hybrid secant–regula falsi–bisection scheme. With both solvers, AlkT & CO2 problems require in general more iterations to

conclude than the other three pairs. This is especially pronounced with solve_at_general (Fig. 5), where a considerable

fraction of the AlkT & CO2 samples require 45 to 55 and more iterations. In comparison, AlkT & CT samples typically require

about four to eight iterations for naturally occurring compositions, and only in some rare instances more than twenty for the

extreme SW3. The other pairs range between these two, AlkT & HCO−3 coming closest to AlkT & CT.330

Finally, Figs. 5 and 6 demonstrate the superiority of solve_at_general_sec over solve_at_general. All in all,

the former requires only one fourth to one half of the number of iterations than the latter, and it produces root approximations

characterised by equation residuals that are up to seven orders of magnitude lower than those obtained with the former (see

Tabs. S2 and S3 in the Additional Results).
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Figure 6. Number of iterations to convergence required by the various data pairs (separately for the lower and the greater [H+] roots of the

AlkT & CO2−
3 ), for each of the four test cases, carried out with solve_at_general_sec (using a hybrid secant–regula falsi–bisection

method). The absolute maximum numbers of iterations were respectively 22, 23, 29 and 27, for SW1 to SW4, resp.

All these observations are also reflected in the execution times of the two solvers. The Newton-Raphson based solver takes335

more than five times as much time for the SW2 test case with AlkT & CO2 than with AlkT & CT; for AlkT & CO2−
3 it takes

four times as much (for both roots though). For AlkT & HCO−3 , the difference is only 20%. With the secant based method, the

picture is completely different: AlkT & CO2 takes only about 30% more time than AlkT & CT, AlkT & CO2−
3 twice as much,

whereas AlkT & HCO−3 executes even about 5% faster. For the AlkT & CO2 pair of input data the difference between the two

solvers is greatest: the secant based one takes less than one fourth of the time taken by the Newton-Raphson based one.340

Another key factor that influences the execution times is the initialisation scheme, although the comparisons are not as

clear-cut as in Munhoven (2013). Safe initialisation with the geometric mean of the root brackets (the fall-back initialisation

value mentioned in Sect. 2.4) results in 40–60% increases of the execution times for the AlkT & CT and the AlkT & HCO−3
input pairs, compared to the standard cubic polynomial one. Similar increases are obtained with a constant uniform pH = 8
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Figure 7. Number of iterations required by Brent’s algorithm in the SW2 test case to solve the auxiliary minimisation problem whose solution

determines the number of roots of the AlkT & CO2−
3 pair and also provides the separation between the two roots The white areas covers the

region where the solution of the minimisation problems is not required as AlkT is sufficiently high so that there were two roots). The black

line in the lower right corner traces the limit between regions with two roots and without roots – cf. Fig. 4c.

initialisation. For AlkT & CO2 and AlkT & CO2−
3 , the differences are much smaller and range between a decrease or an345

increase of up to 5%. With these two, the quality of the root brackets seems to be more critical than the initial value.

In the analysis in section 2.3.1, two characteristic thresholds for AlkT have been made out for γ > 0: an upper one at

Lmin + AlknWC(Hmin), above which the problem always has two [H+] solutions, and a lower one at Lmin + AlknWCinf, below

which the problem does not have any solution at all. For intermediate values of AlkT it is necessary to determine Htan and

Alktan to find out how many roots the problem has, and, in case there are two, where the separation between them lies. The350

minimisation procedure required to determine Htan is computationally expensive as can be seen on Fig. 7. The most probable

number of iterations is in all cases 25, the median number is 27–28, due to the skew-symmetric nature of the distribution of

the number of iterates (not shown). The subsequent computation of the roots is much cheaper: for the lower root, the secant

based algorithm most probably takes five iterations, and only occasionally 15–16, and for the greater root, most probably four

and only rarely more than nine. The total number of samples in the SW2 test case is 1.95 million. 10,500 (0.54%) of these do355

not have any root for the AlkT & CO2−
3 pair and the solution of the minimisation problem is required for 173,445 samples

(8.89%), because Htan is required to separate the two roots. The lower threshold essentially turns out as useless: it ranges at

about −28 meq/kg. This is is due to the hydrogen sulphate acid system which strongly dominates the AlknW minimum in

seawater, because of the high total sulphate concentration in sea-water (ST ' 28mmol/kg). For carbonate ion concentrations

below 400 µmol/kg, i.e., for most of the naturally occurring waters, the AlkT & CO2−
3 problem will always have two roots and360

the solution of the auxiliary minimisation problem is not required to characterise them.
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4 Conclusions

The approach adopted in SOLVESAPHE (Munhoven, 2013) to safely determine carbonate speciation in particular, and speci-

ation calculations of mixtures of acids in aqueous solution in general, knowing only the total concentrations of the different

acid systems and the total alkalinity of the system was adapted and extended here to use [CO2], [HCO−3 ] and [CO2−
3 ] instead365

of the total inorganic carbon concentration, CT. The rationale can be entirely transposed to these three pairs: (1) the amended

alkalinity-pH equations for AlkT & CO2 and for AlkT & HCO−3 still have one and only one positive solution while AlkT &

CO2−
3 may have no solution, or one or two; (2) intrinsic brackets that only depend on a priori available information can be

derived for the root of the AlkT & CO2 and AlkT & HCO−3 problems, as well as for the two roots of AlkT & CO2−
3 problems

that may have to be solved for naturally occurring sample compositions. More uncommon but physically realistic AlkT &370

CO2−
3 problems may additionally require the solution of an auxiliary minimisation problem to determine the threshold AlkT

value below which the problem does not have any roots and above which it has two of them. The solution of this problem also

provides a separation value of the two roots. To our best knowledge, SOLVESAPHE is the first package to offer a complete

solution of the AlkT & CO2−
3 problem, autonomous above all.

The two safeguarded numerical solvers from SOLVESAPHE v. 1 have been adapted to allow for the solution of problems375

that may have up to two roots. The Newton-Raphson–bisection based solver required extensive modifications for the reliable

solution of the numerically far more challenging AlkT & CO2, AlkT & HCO−3 and AlkT & CO2−
3 problems. Most bisection

steps have been replaced by regula falsi steps for increased convergence speed. The secant–bisection solver only required

minimal adaptations. A Fortran 90 reference implementation, SOLVESAPHE v. 2, was prepared and used to evaluate the

performances of the different methods for solving four benchmark problems. While the secant–bisection method was already380

slightly superior to the Newton-Raphson–bisection method in SOLVESAPHE v. 1, that advantage has now become overwhelm-

ing: in SOLVESAPHE v. 2, it typically requires two to four times less iterations, and for the newly handled pairs, the equation

residuals are orders of magnitude lower than the Newton-Raphson–regula falsi–bisection based solver (typically of the order

of 10−19 – 10−18 compared to 10−13 – 10−12).

For carbonate speciation problems posed by AlkT and either one of [CO2], [HCO−3 ] or [CO2−
3 ] the secant based routine385

from SOLVESAPHE v. 2, solve_at_general2_sec, is thus clearly the method of choice; for calculations on the basis

of AlkT & CT, both solve_at_general and solve_at_general_sec from SOLVESAPHE v. 1 will perform better,

although the secant based solver is marginally faster, once again.

Code availability. All the Fortran 90 codes of SOLVESAPHE v. 1 series are available from Zenodo under DOI:10.5281/zenodo.3752250 for

use under the GNU Lesser General Public Licence Version 3 (LGPLv3) or later. The codes for v. 2 that are decribed in this manuscript are390

included in the Supplement and made available for use under the same licence.
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Appendix A: The direct cases

For the sake of completeness, we provide here succinct “recipes” to calculate all the different carbonate system related vari-

ables, knowing two of them. Many of these were already known in the 1960s (see, e.g., Park (1969)). The Guide to Best

Practices for Ocean CO2 Measurements (Dickson et al., 2007) lists the most commonly used pairs and furthermore includes400

procedures for selected triplets and quartets, for which not all of the equilibrium constants are required. In the following, we

assume that there are direct and invertible relationships between [CO2] and the fugacity (fCO2) or the partial pressure (pCO2)

of CO2 and between pH and [H+] on any chosen pH scale. We therefore restrict ourselves to [CO2] and [H+].

In the following, the conditions for the existence of a solution are generally that the species concentrations, the H+ and

DIC are strictly positive. In some instances, the input data must fulfil additional constraints that are, however, not always405

straightforward to quantitatively state a priori.

DIC & CO2, DIC & HCO−3 , DIC & CO2−
3 — (1) The species fraction for the given species concentration leads to a quadratic

equation in [H+] that always allows for exactly one positive solution; (2) calculate the remaining two species concentra-

tions from their respective species fraction; (3) AlkT from eq. (1). In addition to the positivity of the species concentra-

tions, the following constraints must be met: [CO2]<DIC, [HCO−3 ]<DIC and [CO2−
3 ]<DIC.410

CO2 & HCO−3 — (1) [H+] from K1; (2) [CO2−
3 ] from K2; (3) CT can be calculated from the three carbonate species

concentrations; (4) AlkT from eq. (1).

CO2 & CO2−
3 — (1) [HCO−3 ] from [HCO−3 ]2 =K1/K2[[CO2][CO2−

3 ]; (2) CT from the three carbonate species concen-

trations; (3) [H+] from K1 or K2; (4) AlkT from eq. (1).

HCO−3 & CO2−
3 — (1) [H+] from K2; (2) [CO2] from K1; (3) CT from the three carbonate species concentrations; (4)415

AlkT from eq. (1).

CO2 & H+ — (1) calculate [HCO−3 ] from K1; (2) calculate [CO2−
3 ] from K2; (3) CT from the three carbonate species

concentrations; (4) AlkT from eq. (1).
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HCO−3 & H+ — (1) calculate [CO2] from K1; (2) calculate [CO2−
3 ] from K2; (3) CT from the three carbonate species

concentrations; (4) AlkT from eq. (1).420

CO2−
3 & H+ — (1) calculate [HCO−3 ] from K2; (2) calculate [[CO2] from K1; (3) CT from the three carbonate species

concentrations; (4) AlkT from eq. (1).

AlkT & H+ — (1) CT from eq. (2); (2) individual species concentrations from the species fractions.

As illustrated on Fig. 1c–e in section 2.3, there are AlkT & H+ combinations that lead to physically unrealistic negative

AlkC. The shape of the blank area depends on the non-carbonate contributors to the total alkalinity. In practice, such425

incompatible combinations are unlikely to arise from measurements, except if the adopted set of AT contributors is

inappropriate.

CT & H+ — Individual species concentrations from the species fractions; AlkT from eq. (1).
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